15-го января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условие его выплаты таковы:
− 1-го числа k-ого месяца долг возрастёт на 1% по сравнению с концом предыдущего месяца;
− со 2-го по 14-е число k-того месяца необходимо выплатить часть долга;
− 15-го числа k-того месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
На сколько месяцев планируется взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит?
По формуле для переплаты П при выплате суммы кредита S дифференцированными платежами имеем:
где n — искомое число месяцев, а r = 1 — величина платежной ставки в поцентах (см. Гущин Д. Д. «Встречи с финансовой математикой»; для получения полного балла доказательство этих формул необходимо приводить на экзамене). По условию, переплата П равна 0,2S, тогда:
откуда n = 39.
Приведем другое решение.
Долг уменьшается на 15-е число равномерно:
Первого числа долг возрастает на 1%, значит, долг на первое число:
Выплаты:
Тогда
Ответ: 39.

