Задания
Версия для печати и копирования в MS Word
Тип 13 № 514650
i

а)  Ре­ши­те урав­не­ние 2 в сте­пе­ни 4 ко­си­нус x плюс 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка минус 10=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­ще­го от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  За­пи­шем ис­ход­ное урав­не­ние в виде:

 левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в квад­ра­те плюс 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка минус 10=0 рав­но­силь­но левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка плюс 5 пра­вая круг­лая скоб­ка =0.

Зна­чит, или 2 в сте­пе­ни левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка = минус 5, что не­воз­мож­но, или 2 в сте­пе­ни левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка =2 рав­но­силь­но ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , от­ку­да x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k или x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k,k при­над­ле­жит Z .

б)  С по­мо­щью чис­ло­вой окруж­но­сти отберём корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

По­лу­чим числа:  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k:k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 514650: 517438 517445 517452 Все

Источник: За­да­ния 13 (С1) ЕГЭ 2016
Классификатор алгебры: Урав­не­ния сме­шан­но­го типа
Кодификатор ФИПИ/Решу ЕГЭ:
Екатерина Мальчевская 14.05.2017 20:20

Можно ли пи­сать в от­ве­те вме­сто n и m одну букву, на­при­мер, n ?

Александр Иванов

Можно.

Можно даже букву k на­пи­сать.