СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 14 № 513259

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между этими хордами равно

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение.

а) Заметим, что хорда длиной 12 находится на расстоянии от центра окружности основания, а хорда длиной 16, аналогично, — на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2. Тогда расстояние между хордами составляет либо либо По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее.

б) Обозначим центры оснований за и Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания — к другой хорде. Они лежат в одной плоскости , перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание — 

Тогда и, значит, AB, AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

 

Ответ:


Аналоги к заданию № 513259: 514721 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
Классификатор стереометрии: Расстояние между прямыми, Расстояние от точки до прямой, Угол между плоскостями, Цилиндр