Задания
Версия для печати и копирования в MS Word
Тип 18 № 511410

а) Можно ли число 2016 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?

б) Можно ли число 197 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?

в) Найдите наименьшее натуральное число, которое можно представить в виде суммы четырех различных натуральных чисел с одинаковой суммой цифр.

Спрятать решение

Решение.

а) Да, можно. Это верно, например, для чисел 2007 и 9, их сумма равна 2016, а сумма цифр в каждом числе равна 9.

б) Да, можно. Это верно, например, для чисел 139 и 58, их сумма равна 197, а сумма цифр в каждом числе равна 13. Другие примеры: 139+58 или 148 + 49.

в) Наименьшее натуральное число, которое можно представить в виде суммы четырёх различных натуральных чисел с одинаковой суммой цифр, равно сумме четырёх наименьших чисел с этой суммой цифр.

Для сумм 1, 2, 3 и 4 имеем соответственно:

1 плюс 10 плюс 100 плюс 1000=1111,

2 плюс 11 плюс 20 плюс 101=134,

3 плюс 12 плюс 21 плюс 30=66,

4 плюс 13 плюс 22 плюс 31=70.

Если сумма цифр равна 5 или больше, обозначим её через a. Тогда наименьшее из таких чисел − как минимум a. Числа с одинаковой суммой цифр дают одинаковые остатки при делении на 9, поэтому идут минимум через 9. Значит, их сумма не меньше чем

a плюс (a плюс 9) плюс (a плюс 18) плюс (a плюс 27)=4a плюс 54 больше или равно 74.

Получаем, что искомое число равно 66.

 

Ответ: а) да; б) да; в) 66.

Спрятать критерии
Критерии проверки:

Критерии оценивания выполнения заданияБаллы
Верно получены все перечисленные (см. критерий на 1 балл) результаты.4
Верно получены три из перечисленных (см. критерий на 1 балл) результатов.3
Верно получены два из перечисленных (см. критерий на 1 балл) результатов.2
Верно получен один из следующий результатов:

— обоснованное решение в п. а;

— пример в п. б;

— искомая оценка в п. в;

— пример в п. в, обеспечивающий точность предыдущей оценки.

1
Решение не соответствует ни одному из критериев, перечисленных выше.0
Максимальный балл4

Аналоги к заданию № 505503: 511410 Все

Классификатор алгебры: Числа и их свойства