
а) Можно ли число 2016 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?
б) Можно ли число 197 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?
в) Найдите наименьшее натуральное число, которое можно представить в виде суммы четырех различных натуральных чисел с одинаковой суммой цифр.
а) Да, можно. Это верно, например, для чисел 2007 и 9, их сумма равна 2016, а сумма цифр в каждом числе равна 9.
б) Да, можно. Это верно, например, для чисел 139 и 58, их сумма равна 197, а сумма цифр в каждом числе равна 13. Другие примеры: 139+58 или 148 + 49.
в) Наименьшее натуральное число, которое можно представить в виде суммы четырёх различных натуральных чисел с одинаковой суммой цифр, равно сумме четырёх наименьших чисел с этой суммой цифр.
Для сумм 1, 2, 3 и 4 имеем соответственно:
Если сумма цифр равна 5 или больше, обозначим её через a. Тогда наименьшее из таких чисел − как минимум a. Числа с одинаковой суммой цифр дают одинаковые остатки при делении на 9, поэтому идут минимум через 9. Значит, их сумма не меньше чем
Получаем, что искомое число равно 66.
Ответ: а) да; б) да; в) 66.
Критерии оценивания выполнения задания | Баллы |
---|---|
Верно получены все перечисленные (см. критерий на 1 балл) результаты. | 4 |
Верно получены три из перечисленных (см. критерий на 1 балл) результатов. | 3 |
Верно получены два из перечисленных (см. критерий на 1 балл) результатов. | 2 |
Верно получен один из следующий результатов: — обоснованное решение в п. а; — пример в п. б; — искомая оценка в п. в; — пример в п. в, обеспечивающий точность предыдущей оценки. | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
Максимальный балл | 4 |