Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Варианты заданий
1.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

2.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

3.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

4.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

5.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

6.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

7.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

8.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

9.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

10.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.

11.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \veca, \vecb и  \vecc. Век­тор  \vecc раз­ло­жен по двум не­кол­ли­не­ар­ным век­то­рам \veca и \vecb:

\vecc=k \veca плюс l\vecb,

где k и l  — ко­эф­фи­ци­ен­ты раз­ло­же­ния. Най­ди­те k.