Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Варианты заданий
1.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно 0,8.

2.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно −3,1.

3.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно −17.

4.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно 2,2.

5.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно 0,75.

6.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно −27.

7.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно 19.

8.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно −9,5.

9.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно 1,08.

10.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =\dfrackx плюс a. Най­ди­те, при каком зна­че­нии x зна­че­ние функ­ции равно 1,75.

11.  
i

 

На ри­сун­ке изоб­ражён гра­фик функ­ции вида $f\left(x\right)=\dfrac{k}{x+a} $. Най­ди­те зна­че­ние $x$, при ко­то­ром $f\left(x\right)=0,15$.

12.  
i

 

На ри­сун­ке изоб­ражён гра­фик функ­ции вида $f\left(x\right)=\dfrac{k}{x+a} $. Най­ди­те зна­че­ние $x$, при ко­то­ром $f\left(x\right)=-0,125$.