А. Ларин. Тренировочный вариант № 372.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Основанием правильной треугольной пирамиды MABC является треугольник ABC со стороной 6. Ребро MA перпендикулярно грани MBC. Через вершину пирамиды M и середины ребер
а) Докажите, что сечение пирамиды плоскостью α является равносторонним треугольником.
б) Найдите расстояние от вершины C до плоскости α.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В растворе Х содержится 30% вещества А и 50% вещества В, в растворе Y содержится 50% вещества А и 40% вещества В, в растворе Z содержится 80% вещества А и 10% вещества В. В результате смешивания получился раствор, содержащий 60% вещества А. Найдите наименьшее возможное содержание вещества В в получившемся растворе.
На следующей странице вам будет предложено проверить их самостоятельно.
Дана окружность с диаметром AB. Вторая окружность с центром в точке A пересекает первую окружность в точках C и D и диаметр в точке E. На дуге CE, не содержащей точки D, взята точка M, отличная от точек C и E. Луч BM пересекает первую окружность в точке N, а вторую пересекает вторично в точке K.
а) Докажите, что MN = NK.
б) Найдите MN, если известно, что CN = 2, ND = 3.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых неравенство
имеет ровно два решения.
На следующей странице вам будет предложено проверить их самостоятельно.
Участники конкурса на лучшую математическую задачу анонимно присылают каждый свою задачу. После публикации все участники дают оценку каждой задаче, кроме своей. В конкурсе принимают участие 6 человек. Каждый участник за лучшую по его мнению задачу дает 5 баллов, за следующую — 4 балла и так далее, за пятую — 1 балл. По каждой задаче баллы суммируются, так определяется рейтинг задачи.
а) Могут ли все рейтинги быть простыми числами?
б) Могла ли сумма четырех наибольших рейтингов быть в три раза больше суммы остальных?
в) Какова минимальная сумма третьего и четвертого рейтингов, если им дали номера в порядке невозрастания?
На следующей странице вам будет предложено проверить их самостоятельно.