СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Сайты, меню, вход, новости


Вариант № 34860928

А. Ларин. Тренировочный вариант № 328. (часть C).

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание 13 № 552510

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие промежутку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задание 14 № 552511

В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О. Точка N — середина ребра SC, точка L — середина ребра SA.

а) Докажите, что плоскость BNL делит ребро SD в отношении 1 : 2, считая от вершины S.

б) Найдите угол между плоскостями BNL и АВС, если пирамида правильная, SA = 8, а тангенс угла между боковым ребром и плоскостью основания пирамиды равен


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задание 15 № 552512

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задание 16 № 552513

В окружность радиусом с центром в точке O вписана трапеция ABCD. Основание трапеции AD  является диаметром окружности, угол BAD равен 60°. Хорда СЕ пересекает диаметр AD в точке Р такой, что AP : PD = 1 : 3.

а) Докажите, что точка Р — cередина отрезка АО.

б) Найдите площадь треугольника BPE.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задание 17 № 552514

В начале месяца Артем взял в банке кредит 2,4 млн рублей с месячной процентной ставкой 5% на 12 месяцев с погашением кредита по следующей схеме:

— в начале каждого месяца банк увеличивает долг на 5%;

— выплаты производятся в конце каждого месяца;

— каждая следующая выплата на 5% больше предыдущей.

Сколько рублей должна составлять первая выплата, чтобы Артем погасил свой кредит по указанной схеме за 12 месяцев?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задание 18 № 552515

Найдите все значения параметра а, при которых неравенство

выполняется для любого действительного числа х.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Задание 19 № 552516

Для получения членства в одном престижном клубе проводится отбор. Каждый из претендентов вносит залог, который является целым неотрицательным числом тысяч. Сумма залога в 150 тысяч гарантирует получение членства. После окончания сроков приема залога с целью увеличения численности клуба руководство приняло решение добавить к сумме залога каждого из претендентов 10 тысяч.

а) Могло ли оказаться так, что после этого понизится средняя сумма залога у тех, кто не достиг достаточной суммы?

б) Могло ли оказаться так, что после этого понизится средняя сумма залога у тех, кто достиг достаточной суммы, и тех, кто не достиг достаточной суммы?

в) Известно, что первоначально средняя сумма залога всех участников составила 130 тысяч рублей, средняя сумма тех, кто сдал достаточную сумму, составила 160 тысяч рублей, а у тех, кто не сдал достаточной суммы, она составила 125 тысяч. После добавления 10 тысяч средняя сумма залога среди тех, кто достиг достаточной

суммы, составила 155 тысяч, а средняя сумма залога у тех, кто не достиг достаточной суммы, составила 120 тысяч. При каком наименьшем числе участников возможна такая ситуация?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.