А. Ларин. Тренировочный вариант № 325. (часть C).
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие промежутку
На следующей странице вам будет предложено проверить их самостоятельно.
Дан прямой круговой конус с вершиной М. Осевое сечение конуса — треугольник с углом 120° при вершине М. Образующая конуса равна Через точку М проведено сечение конуса, перпендикулярное одной из образующих.
а) Докажите, что получившийся в сечении треугольник — тупоугольный.
б) Найдите расстояние от центра О основания конуса до плоскости сечения.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
В остроугольном треугольнике АВС провели высоты АН1 и СН2, затем провели луч НМ, который пересекает окружность, описанную около треугольника АВС, в точке К, где М — середина АС, а Н — точка пересечения высот.
а) Докажите, что НМ = МК.
б) Найдите площадь треугольника ВСК, если
AC = 1.
На следующей странице вам будет предложено проверить их самостоятельно.
5 января 2020 года Андрей планирует открыть вклад на сумму 3 миллиона рублей. Первые три года 2 января банк будет начислять 10% на сумму вклада, а в последующие годы банк будет начислять 5% на сумму вклада.
4 января каждого года Андрей будет делать дополнительный взнос на вклад так, чтобы после этого величина вклада на 5 января была больше величины вклада на 5 января прошлого года на одно и то же число. Определите общий размер начислений банка, если 3 января 2031 года на вкладе будет лежать 24,15 миллиона рублей.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых система уравнений
имеет ровно 1 решение.
На следующей странице вам будет предложено проверить их самостоятельно.
Назовем натуральное число «замечательным», если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр.
а) Чему равна сумма цифр две тысячи пятнадцатого замечательного числа?
б) Сколько существует двухзначных замечательных чисел?
в) Какой порядковый номер замечательного числа 5999?
г) Чему равна сумма всех четырехзначных замечательных чисел?
На следующей странице вам будет предложено проверить их самостоятельно.