Вариант № 20017516
Работа доступна: с 24.09.2018 15:30 (МСК) по 01.10.2018 08:00 (МСК)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Прием работ окончен

Версия для печати и копирования в MS Word
1.  Тип Д2 № 26619
i

Ша­ри­ко­вая ручка стоит 40 руб­лей. Какое наи­боль­шее число таких ручек можно будет ку­пить на 900 руб­лей после по­вы­ше­ния цены на 10%?

2.  Тип Д1 № 504423
i

На диа­грам­ме по­ка­зан сред­ний балл участ­ни­ков из 10 стран в те­сти­ро­ва­нии уча­щих­ся 8-го клас­са по ма­те­ма­ти­ке в 2007 году (по 1000-балль­ной шкале). Среди ука­зан­ных стран вто­рое место при­над­ле­жит США. Опре­де­ли­те, какое место за­ни­ма­ет Шве­ция.

 

3.  Тип Д4 № 520896
i

Най­ди­те пло­щадь тра­пе­ции, изоб­ра­жен­ной на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см x 1см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.

4.  Тип 4 № 321293
i

На борту самолёта 24 мест рядом с за­пас­ны­ми вы­хо­да­ми и 11 мест за пе­ре­го­род­ка­ми, раз­де­ля­ю­щи­ми са­ло­ны. Осталь­ные места не­удоб­ны для пас­са­жи­ра вы­со­ко­го роста. Пас­са­жир В. вы­со­ко­го роста. Най­ди­те ве­ро­ят­ность того, что на ре­ги­стра­ции при слу­чай­ном вы­бо­ре места пас­са­жи­ру В. до­ста­нет­ся удоб­ное место, если всего в самолёте 350 мест.

5.  Тип 6 № 99757
i

Най­ди­те ко­рень урав­не­ния  дробь: чис­ли­тель: 6, зна­ме­на­тель: x в квад­ра­те плюс 2 конец дроби =1. Если урав­не­ние имеет более од­но­го корня, в от­ве­те за­пи­ши­те боль­ший из кор­ней.

6.  Тип 1 № 27796
i

В ост­ро­уголь­ном тре­уголь­ни­ке ABC из­вест­но, что AC  =  BC  =  6, вы­со­та AH равна 3. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

7.  Тип 8 № 8539
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­де­лен­ной на ин­тер­ва­ле  левая круг­лая скоб­ка минус 1; 16 пра­вая круг­лая скоб­ка . Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . В от­ве­те ука­жи­те длину наи­боль­ше­го из них.

8.  Тип 3 № 74887
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 8, бо­ко­вое ребро равно 10. Най­ди­те ее объем.

10.  Тип 9 № 28135
i

Мо­то­цик­лист, дви­жу­щий­ся по го­ро­ду со ско­ро­стью  v _0 = 57 км/ч, вы­ез­жа­ет из него и сразу после вы­ез­да на­чи­на­ет раз­го­нять­ся с по­сто­ян­ным уско­ре­ни­ем a = 12 км/ч2. Рас­сто­я­ние от мо­то­цик­ли­ста до го­ро­да, из­ме­ря­е­мое в ки­ло­мет­рах, опре­де­ля­ет­ся вы­ра­же­ни­ем S = v _0 t плюс дробь: чис­ли­тель: at в квад­ра­те , зна­ме­на­тель: 2 конец дроби , где t  — время в часах. Опре­де­ли­те наи­боль­шее время, в те­че­ние ко­то­ро­го мо­то­цик­лист будет на­хо­дить­ся в зоне функ­ци­о­ни­ро­ва­ния со­то­вой связи, если опе­ра­тор га­ран­ти­ру­ет по­кры­тие на рас­сто­я­нии не далее чем в 30 км от го­ро­да. Ответ вы­ра­зи­те в ми­ну­тах.

11.  Тип 10 № 108665
i

Сме­ша­ли не­ко­то­рое ко­ли­че­ство 19-⁠про­цент­но­го рас­тво­ра не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 13-⁠про­цент­но­го рас­тво­ра этого ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?