Задания
Версия для печати и копирования в MS Word
Тип 12 № 680572
i

Най­ди­те точку мак­си­му­ма функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка минус 10.

Ре­ше­ние.

Это за­да­ние ещё не ре­ше­но, при­во­дим ре­ше­ние про­то­ти­па.


Най­ди­те точку мак­си­му­ма функ­ции y= левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка плюс 5.

Най­дем про­из­вод­ную за­дан­ной функ­ции:

y'= левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те пра­вая круг­лая скоб­ка ' левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка ' плюс левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка '=

=2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 2 левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3x минус 10 пра­вая круг­лая скоб­ка .

Най­дем нули про­из­вод­ной:

 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3x минус 10 пра­вая круг­лая скоб­ка =0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний x=2, x= дробь: чис­ли­тель: 10, зна­ме­на­тель: 3 конец дроби . конец со­во­куп­но­сти .

 

Опре­де­лим знаки про­из­вод­ной функ­ции и изоб­ра­зим на ри­сун­ке по­ве­де­ние функ­ции:

Ис­ко­мая точка мак­си­му­ма x=2.

 

Ответ: 2.