Задания
Версия для печати и копирования в MS Word

В июле 2016 года пла­ни­ру­ет­ся взять кре­дит в банке на че­ты­ре года в раз­ме­ре S млн руб­лей, где S  — целое число. Усло­вия его воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг уве­ли­чи­ва­ет­ся на 15% по срав­не­нию с кон­цом преды­ду­ще­го года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить часть долга;

  — в июле каж­до­го года долг дол­жен со­став­лять часть кре­ди­та в со­от­вет­ствии со сле­ду­ю­щей таб­ли­цей.

 

Месяц и годИюль 2016Июль 2017Июль 2018Июль 2019Июль 2020
Долг (в млн руб­лей)S0,8S0,5S0,1S0

 

Най­ди­те наи­боль­шее зна­че­ние S, при ко­то­ром общая сумма вы­плат будет мень­ше 50 млн руб­лей.

Спрятать решение

Ре­ше­ние.

Долг перед бан­ком (в млн руб­лей) на июль каж­до­го года дол­жен умень­шать­ся до нуля сле­ду­ю­щим об­ра­зом:

S;0,8S;0,5S;0,1S;0.

По усло­вию, в ян­ва­ре каж­до­го года долг уве­ли­чи­ва­ет­ся на 15%, зна­чит, долг в ян­ва­ре каж­до­го года равен:

1,15S;0,92S;0,575S;0,115S.

Сле­до­ва­тель­но, вы­пла­ты с фев­ра­ля по июнь каж­до­го года со­став­ля­ют:

0,35S;0,42S;0,475S;0,115S.

По усло­вию, сумма вы­плат долж­на быть мень­ше 50 млн руб­лей.

0,35S плюс 0,42S плюс 0,475S плюс 0,115S мень­ше 50 рав­но­силь­но 1,36S мень­ше 50 рав­но­силь­но S мень­ше целая часть: 36, дроб­ная часть: чис­ли­тель: 13, зна­ме­на­тель: 17 .

Наи­боль­шее целое ре­ше­ние этого не­ра­вен­ства  — число 36. Зна­чит, ис­ко­мый раз­мер кре­ди­та  — 36 млн руб­лей.

 

Ответ: 36.


-------------
Дублирует задание № 514483.
Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Верно по­стро­е­на ма­те­ма­ти­че­ская мо­дель1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше0
Мак­си­маль­ный балл2
Источники: