Задания
Версия для печати и копирования в MS Word

а)  Ре­ши­те урав­не­ние 3 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 8 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка =0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  При­ве­дем урав­не­ние к од­но­род­но­му от­но­си­тель­но по­ка­за­тель­ных функ­ций, затем све­дем его квад­рат­но­му от­но­си­тель­но по­ка­за­тель­ных функ­ций:

3 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 8 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка =0 рав­но­силь­но 3 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 2 умно­жить на 4 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =0 рав­но­силь­но

 

 рав­но­силь­но 3 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 5 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 2=0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =1, левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x плюс 1=0,x плюс 1= минус 1 конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= минус 1,x= минус 2. конец со­во­куп­но­сти .

б)  Отберём корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая квад­рат­ная скоб­ка . Для этого за­ме­тим, что

 минус 4 мень­ше минус Пи мень­ше минус 2 мень­ше 2 Пи \Rightarrow минус 2 мень­ше минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби мень­ше минус 1 мень­ше Пи .

Зна­чит, от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая квад­рат­ная скоб­ка при­над­ле­жит толь­ко ко­рень −1.

 

Ответ: а)  левая фи­гур­ная скоб­ка минус 2; минус 1 пра­вая фи­гур­ная скоб­ка ; б)  левая фи­гур­ная скоб­ка минус 1 пра­вая фи­гур­ная скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источники:
Классификатор алгебры: По­ка­за­тель­ные урав­не­ния, По­ка­за­тель­ные урав­не­ния, свой­ства сте­пе­ни, Срав­не­ние чисел
Методы алгебры: За­ме­на пе­ре­мен­ной, Све­де­ние к од­но­род­но­му
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.5 По­ка­за­тель­ные урав­не­ния