Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

За­ме­тим, что

3 в сте­пе­ни левая круг­лая скоб­ка \log в квад­ра­те _3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =3 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 3 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка ,

и введём за­ме­ну пе­ре­мен­ной t = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка . Тогда

4t минус 9 боль­ше или равно 4t в квад­ра­те минус 11t рав­но­силь­но 4t в квад­ра­те минус 15t плюс 9\leqslant0 рав­но­силь­но левая круг­лая скоб­ка t минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4t минус 3 пра­вая круг­лая скоб­ка \leqslant0 рав­но­силь­но дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби мень­ше или равно t\leqslant3.

Вернёмся к ис­ход­ной пе­ре­мен­ной и про­ло­га­риф­ми­ру­ем не­ра­вен­ство по ос­но­ва­нию 3:

 дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби мень­ше или равно левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка \leqslant3 рав­но­силь­но ло­га­рифм по ос­но­ва­нию целая часть: 3, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4 мень­ше или равно ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию 3 3 рав­но­силь­но

 

 рав­но­силь­но 1 минус ло­га­рифм по ос­но­ва­нию 3 4\leqslant\log в квад­ра­те _3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка \leqslant1 рав­но­силь­но \log в квад­ра­те _3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка \leqslant1 рав­но­силь­но

 

 рав­но­силь­но минус 1 мень­ше или равно ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше или равно 1 рав­но­силь­но дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби мень­ше или равно x минус 2 мень­ше или равно 3 рав­но­силь­но дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби мень­ше или равно x мень­ше или равно 5.

Ответ:  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби ; 5 пра­вая квад­рат­ная скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 311. (Часть C)
Классификатор алгебры: Ло­га­риф­ми­че­ские не­ра­вен­ства, Не­ра­вен­ства сме­шан­но­го типа, По­ка­за­тель­ные урав­не­ния и не­ра­вен­ства
Методы алгебры: Вве­де­ние за­ме­ны, Метод ин­тер­ва­лов
Кодификатор ФИПИ/Решу ЕГЭ: