Задания
Версия для печати и копирования в MS WordВ треугольнике ABC угол A равен 120°. Прямые, содержащие высоты BM и CN треугольника ABC, пересекаются в точке H. Точка O — центр окружности, описанной около треугольника ABC.
а) Докажите, что AH = AO.
б) Найдите площадь треугольника AHO, если
Решение. а
Тогда
Из доказанного в пункте a) имеем, что
Спрятать критерии
а) По теореме синусов имеем: Четырехугольник MHNA вписан в окружность с диаметром AH, тогда по теореме синусов для треугольника MNA имеем:
Треугольники MAN и BAC подобны, поскольку
тогда Подставляя, получаем:
б) По теореме о вписанном угле Тогда
Найдем площадь треугольника:
Ответ:


В ответе на пункт б) указано число 5/4. По опыту, за такой ответ ставят 0 баллов, так как дробь неправильная, а в данном случае 5/4 можно записать и в десятичном виде. Стоит дать ответ 1 целая 1/4 или 1,25.
У вас ложная информация. Это задание оценивается в три балла. Поэтому если бы и был допущен недочет в форме записи ответа, эксперт выставил бы 2 балла, но никак не 0. Грамотный эксперт при правильном решении этой непростой задачи по геометрии не снизит оценку и за ответ
Почему? В частности, потому, что в общем случае сокращение дробей отдельная непростая задача (вот не самый сложный пример:
), а отделить дроби, которые надо сокращать, от дробей, которые сокращать необязательно, невозможно.
Второе: выделение целой части принято в средней школе из методических соображений. Чтобы учащиеся, впервые познакомившиеся с понятием дробь, могли соотносить новые для них дробные выражения с уже изученными целыми числами. В старшей школе, как и в высшей математике, этого не требуется. Неправильная дробь
ничуть не «хуже», а зачастую и предпочтительнее смешанной дроби
Скажем, не принято писать
пишут
или 
Десятичные же дроби математики и вовсе не используют. Разве что решая экономические или инженерные задачи. Но и тогда лишь потому, что так принято в соответствующих областях знания.
Уважаемая служба поддержки, спасибо за исчерпывающий ответ и примеры, с которыми я согласен. Однако есть опыт и практика: если числовой ответ в заданиях второй части давать в виде неправильной дроби, то эксперты снижают балл на 1. Именно поэтому я и поднял вопрос. Эксперты нынче очень строгие.
Вначале вы сообщали, что 0 ставят, теперь говорите, что снижают на 1 балл. Нет. Нет и не может быть такой практики, а ваше предложение идет вразрез с устоявшейся математической традицией. Откройте учебники алгебры для 10−11 классов, сборники заданий для подготовки к ЕГЭ, пособия для поступающих в вузы, учебники высшей математики — посмотрите в них ответы к упражнениям. Неправильные дроби в смешанные не переводятся. Здесь нет даже повода для споров. Причем тут строгие нынче эксперты или жалостливые? Экспертам и в голову не придет снижать оценку за использование неправильных дробей. В дополнение к вышесказанному еще и потому, что перед ними лежат критерии проверки работ, разработанные ФИПИ, в которых неправильные дроби используются, а смешанные нет. Неправильные дроби использовать можно и нужно. Это не дискуссионный вопрос, это общепринято.