Задания
Версия для печати и копирования в MS Word

Ре­ши­те не­ра­вен­ство:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 9 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка .

Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем не­ра­вен­ство:

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 9 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка \underset ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1 мень­ше 1\mathop рав­но­силь­но
\mathop рав­но­силь­но си­сте­ма вы­ра­же­ний 9 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка боль­ше или равно 2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 3, 2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 3 боль­ше 0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний 9 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 4 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка плюс 3 боль­ше или равно 0,2 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка минус 3 боль­ше 0. конец си­сте­мы .

Пусть 3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка =t, тогда

 си­сте­ма вы­ра­же­ний t в квад­ра­те минус 4t плюс 3\geqslant0,2t минус 3 боль­ше 0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний со­во­куп­ность вы­ра­же­ний t\leqslant1,t\geqslant3, конец си­сте­мы . t боль­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец со­во­куп­но­сти . рав­но­силь­но t боль­ше или равно 3.

Вернёмся к ис­ход­ной пе­ре­мен­ной:

3 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка боль­ше или равно 3 рав­но­силь­но |x| боль­ше или равно 1 рав­но­силь­но со­во­куп­ность вы­ра­же­ний x мень­ше или равно минус 1,x боль­ше или равно 1. конец со­во­куп­но­сти .

Ответ:  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 283
Классификатор алгебры: Ло­га­риф­ми­че­ские не­ра­вен­ства, Не­ра­вен­ства с мо­ду­ля­ми, Не­ра­вен­ства сме­шан­но­го типа, По­ка­за­тель­ные урав­не­ния и не­ра­вен­ства
Методы алгебры: Вве­де­ние за­ме­ны, Метод ин­тер­ва­лов