Задания
Версия для печати и копирования в MS Word
Тип Д12 C3 № 527570
i

Ре­ши­те не­ра­вен­ство:  левая круг­лая скоб­ка x в квад­ра­те плюс 3x плюс 2 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те \leqslant0.

Спрятать решение

Ре­ше­ние.

Сразу от­ме­тим, что

 си­сте­ма вы­ра­же­ний x плюс 2 боль­ше 0,x плюс 3 боль­ше 0,x плюс 3 не равно 1, левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше 0 конец си­сте­мы .

по­это­му не­ра­вен­ство опре­де­ле­но толь­ко при x при­над­ле­жит левая круг­лая скоб­ка минус 2;1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; бес­ко­неч­ность пра­вая круг­лая скоб­ка . Ра­ци­о­на­ли­зи­ру­ем его:

 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка конец дроби умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус ло­га­рифм по ос­но­ва­нию 3 1 пра­вая круг­лая скоб­ка мень­ше или равно 0 рав­но­силь­но

 рав­но­силь­но левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 1, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 1 конец дроби умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус ло­га­рифм по ос­но­ва­нию 3 1 пра­вая круг­лая скоб­ка мень­ше или равно 0 рав­но­силь­но

 рав­но­силь­но левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: x плюс 2 минус 1, зна­ме­на­тель: x плюс 3 минус 1 конец дроби умно­жить на левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1 пра­вая круг­лая скоб­ка мень­ше или равно 0 рав­но­силь­но

 рав­но­силь­но левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: x плюс 2 конец дроби умно­жить на x левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше или равно 0 рав­но­силь­но

 рав­но­силь­но левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те x левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше или равно 0 (x плюс 2 не равно 0 рав­но­силь­но x при­над­ле­жит левая фи­гур­ная скоб­ка минус 1 пра­вая фи­гур­ная скоб­ка \cup левая квад­рат­ная скоб­ка 0;2 пра­вая квад­рат­ная скоб­ка .

Учи­ты­вая огра­ни­че­ние выше, окон­ча­тель­но имеем: x при­над­ле­жит левая фи­гур­ная скоб­ка минус 1 пра­вая фи­гур­ная скоб­ка \cup левая квад­рат­ная скоб­ка 0;1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1;2 пра­вая квад­рат­ная скоб­ка .

 

Ответ: x при­над­ле­жит левая фи­гур­ная скоб­ка минус 1 пра­вая фи­гур­ная скоб­ка \cup левая квад­рат­ная скоб­ка 0;1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1;2 пра­вая квад­рат­ная скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ.2
Обос­но­ван­но по­лу­чен ответ, не­вер­ный из-за не­до­че­та в ре­ше­нии или вы­чис­ли­тель­ной ошиб­ки1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 271
Классификатор алгебры: Не­ра­вен­ства с ло­га­риф­ма­ми по пе­ре­мен­но­му ос­но­ва­нию
Методы алгебры: Ра­ци­о­на­ли­за­ция не­ра­венств
Кодификатор ФИПИ/Решу ЕГЭ: