Задания
Версия для печати и копирования в MS Word
Тип 15 № 526333
i

Ре­ши­те не­ра­вен­ство  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 3 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 4x минус x в квад­ра­те минус 3 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка .

Спрятать решение

Ре­ше­ние.

Найдём ОДЗ.

 си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 3 пра­вая круг­лая скоб­ка боль­ше 0,4x минус x в квад­ра­те минус 3 боль­ше 0,5 минус x боль­ше 0, конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний x минус 1 боль­ше 0,x в квад­ра­те минус 4x плюс 3 мень­ше 0,5 минус x боль­ше 0, конец си­сте­мы . рав­но­силь­но
 рав­но­силь­но си­сте­ма вы­ра­же­ний x боль­ше 1, левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка мень­ше 0,x мень­ше 5, конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний x боль­ше 1,1 мень­ше x мень­ше 3,x мень­ше 5, конец си­сте­мы . рав­но­силь­но 1 мень­ше x мень­ше 3.

Далее на ОДЗ имеем:

 ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 3 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка минус левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка рав­но­силь­но
 рав­но­силь­но ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 3 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка рав­но­силь­но левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 3 пра­вая круг­лая скоб­ка \leqslant левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 8x плюс 15 пра­вая круг­лая скоб­ка рав­но­силь­но

 

 рав­но­силь­но левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 3 минус x в квад­ра­те плюс 8x минус 15 пра­вая круг­лая скоб­ка \leqslant0 рав­но­силь­но левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 8x минус 12 пра­вая круг­лая скоб­ка \leqslant0.

С учётом ОДЗ по­лу­чим x при­над­ле­жит левая круг­лая скоб­ка 1;1,5 пра­вая квад­рат­ная скоб­ка .

 

Ответ:  левая круг­лая скоб­ка 1; 1,5 пра­вая квад­рат­ная скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 526333: 526676 Все

Источники:
Классификатор алгебры: Ло­га­риф­ми­че­ские не­ра­вен­ства
Методы алгебры: Метод ин­тер­ва­лов
Кодификатор ФИПИ/Решу ЕГЭ: