Задания
Версия для печати и копирования в MS Word
Тип Д8 C1 № 521764
i

Дано урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: синус 2x конец ар­гу­мен­та = ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: ко­си­нус x конец ар­гу­мен­та .

а)  Ре­ши­те урав­не­ние.

б)  Най­ди­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ;0 пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пе­ре­пи­шем урав­не­ние в виде  ко­рень из: на­ча­ло ар­гу­мен­та: 2 синус x ко­си­нус x конец ар­гу­мен­та = ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­рень из: на­ча­ло ар­гу­мен­та: ко­си­нус x конец ар­гу­мен­та . Нам под­хо­дят все x, для ко­то­рых  ко­си­нус x=0, то есть x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k. Для про­чих x по­лу­чим  ко­рень из: на­ча­ло ар­гу­мен­та: 2 синус x конец ар­гу­мен­та = ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , от­ку­да  синус x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби и при этом  ко­си­нус x боль­ше 0, то есть x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k.

 

б)  На ука­зан­ном от­рез­ке лежат  минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби .

 

Ответ: а) левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k;k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б) левая фи­гур­ная скоб­ка минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая фи­гур­ная скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а, или в пунк­те б.

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния обоих пунк­тов — пунк­та а и пунк­та б.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 231
Классификатор алгебры: Ир­ра­ци­о­наль­ные урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, Урав­не­ния сме­шан­но­го типа
Методы алгебры: Фор­му­лы двой­но­го угла