Задания
Версия для печати и копирования в MS Word
Тип Д8 C1 № 521388
i

Дано урав­не­ние  синус x= ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби минус x пра­вая круг­лая скоб­ка .

а)  Ре­ши­те урав­не­ние.

б)  Най­ди­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 4 Пи ; дробь: чис­ли­тель: 16 Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пе­ре­пи­шем урав­не­ние в виде  ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби минус x пра­вая круг­лая скоб­ка .

Либо  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби минус x плюс 2 Пи k (что не­воз­мож­но), либо  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс x плюс 2 Пи k, то есть x= дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс Пи k.

 

б)  Ука­зан­но­му от­рез­ку при­над­ле­жит  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс 4 Пи .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс Пи k : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 53 Пи , зна­ме­на­тель: 12 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а, или в пунк­те б.

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния обоих пунк­тов — пунк­та а и пунк­та б.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 205
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния
Методы алгебры: Фор­му­лы при­ве­де­ния