Задания
Версия для печати и копирования в MS Word
Тип 13 № 520783
i

а)  Ре­ши­те урав­не­ние: 2 синус в квад­ра­те x плюс ко­рень из 2 \2 синус левая круг­лая скоб­ка x плюс { дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = ко­си­нус {x .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Вы­пол­ним пре­об­ра­зо­ва­ния:

2 синус в квад­ра­те x плюс синус x плюс ко­си­нус x= ко­си­нус x рав­но­силь­но 2 синус в квад­ра­те x плюс синус x=0 рав­но­силь­но

 

 рав­но­силь­но синус x умно­жить на левая круг­лая скоб­ка 2 синус x плюс 1 пра­вая круг­лая скоб­ка =0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний синус x=0, синус x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= Пи k,x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k,x= минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k,k при­над­ле­жит Z . конец со­во­куп­но­сти .

б)  С по­мо­щью чис­ло­вой окруж­но­сти отберём корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

По­лу­чим числа:  минус 2 Пи ; минус Пи ; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка Пи k, минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби  плюс 2 Пи k, минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  минус 2 Пи ; минус Пи ; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 520783: 520821 Все

Источники:
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли, Три­го­но­мет­ри­че­ские фор­му­лы суммы или раз­но­сти ар­гу­мен­тов
Методы алгебры: Три­го­но­мет­ри­че­ские фор­му­лы суммы и раз­но­сти ар­гу­мен­тов
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Три­го­но­мет­ри­че­ские урав­не­ния