СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задания Д7 C2 № 514589

AB — диаметр нижнего основания цилиндра, а CD — хорда верхнего основания цилиндра, причём CD || AB.

а) Докажите, что отрезки AC и BD равны.

б) Найдите объём пирамиды, основанием которой является четырёхугольник с вершинами в точках A, B, C, D, а вершиной — центр верхнего основания цилиндра, если известно, что высота цилиндра равна 9, AB = 26, CD = 10.

Решение.

а) Рассмотрим  — проекцию AB на плоскость верхнего основания. Тогда поэтому точки служат вершинами вписанной трапеции. Но такая трапеция обязательно равнобедренная, поэтому ее боковые стороны и диагонали равны, то есть Обозначая за h высоту цилиндра, имеем

что и требовалось.

б) Будем считать, что точки лежат именно в таком порядке (иначе переименуем точки C и D). Опустим перпендикуляр OH на CD. Заметим, что поэтому Обозначая за центр нижнего основания цилиндра, находим  — высота трапеции ACDB.

Опустим перпендикуляр из O на Он будет также перпендикулярен CD (поскольку то и плоскость в которой он лежит, перпендикулярна CD).

Значит, это и будет высота пирамиды. Теперь считаем

 

Ответ: 648.

Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 159.
Классификатор стереометрии: Объем тела, Цилиндр, Четырехугольная пирамида