Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

а)  Ис­поль­зу­ем фор­му­лу при­ве­де­ния и ос­нов­ное три­го­но­мет­ри­че­ское тож­де­ство

2 синус в квад­ра­те x=3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка плюс 4 рав­но­силь­но

 рав­но­силь­но 2 левая круг­лая скоб­ка 1 минус ко­си­нус в квад­ра­те x пра­вая круг­лая скоб­ка =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус x плюс 4 рав­но­силь­но 2 ко­си­нус в квад­ра­те x плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус x плюс 2=0 рав­но­силь­но

 

 рав­но­силь­но со­во­куп­ность вы­ра­же­ний ко­си­нус x= дробь: чис­ли­тель: минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби , ко­си­нус x= дробь: чис­ли­тель: минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний ко­си­нус x= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби , ко­си­нус x= минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец со­во­куп­но­сти . \underset| ко­си­нус x| мень­ше или равно 1\mathop рав­но­силь­но
\underset| ко­си­нус x| мень­ше или равно 1\mathop рав­но­силь­но ко­си­нус x= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k,x= минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, конец со­во­куп­но­сти . k при­над­ле­жит Z .

 

б)  Отберём корни, ле­жа­щие на за­дан­ном от­рез­ке (см. рис.).

Ис­ко­мый ко­рень:  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 514472: 514473 Все

Источники:
Классификатор алгебры: Ос­нов­ные три­го­но­мет­ри­че­ские тож­де­ства, Ос­нов­ное три­го­но­мет­ри­че­ское тож­де­ство и его след­ствия, Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на синус или ко­си­нус
Методы алгебры: Фор­му­лы при­ве­де­ния, пе­ри­о­дич­ность три­го­но­мет­ри­че­ских функ­ций, Фор­му­лы при­ве­де­ния