Задания
Версия для печати и копирования в MS Word
Тип 13 № 514081
i

а)  Ре­ши­те урав­не­ние 3 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 7 умно­жить на 6 в сте­пе­ни x плюс 3 умно­жить на 4 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­ще­го от­рез­ку  левая квад­рат­ная скоб­ка 2;3 пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем ис­ход­ное урав­не­ние:

3 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 7 умно­жить на 6 в сте­пе­ни x плюс 3 умно­жить на 4 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =0 рав­но­силь­но 9 в сте­пе­ни x минус 7 умно­жить на 6 в сте­пе­ни x плюс 12 умно­жить на 4 в сте­пе­ни x =0 рав­но­силь­но левая круг­лая скоб­ка дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x минус 7 левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x плюс 12=0.

Пусть t= левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x , тогда урав­не­ние за­пи­шет­ся в виде t в квад­ра­те минус 7t плюс 12=0, от­ку­да t=3 или t=4.

При t=3 по­лу­чим  левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x =3, от­ку­да x= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 3.

При t=4 по­лу­чим  левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x =4, от­ку­да x= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 4.

б)  По­сколь­ку  левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те мень­ше 3 мень­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в кубе мень­ше 4, по­лу­ча­ем: 2 мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 3 мень­ше 3 мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 4. Зна­чит, от­рез­ку  левая квад­рат­ная скоб­ка 2;3 пра­вая квад­рат­ная скоб­ка при­над­ле­жит число  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 3.

 

Ответ: а)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 3, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 4; б)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 3.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 514081: 515781 Все

Источник: За­да­ния 13 (С1) ЕГЭ 2014
Классификатор алгебры: По­ка­за­тель­ные урав­не­ния
Методы алгебры: За­ме­на пе­ре­мен­ной
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.5 По­ка­за­тель­ные урав­не­ния