Задания
Версия для печати и копирования в MS Word
Тип Д15 C4 № 514068
i

а)  До­ка­жи­те, что ра­ди­ус окруж­но­сти, впи­сан­ной в пря­мо­уголь­ный тре­уголь­ник, равен по­ло­ви­не раз­но­сти суммы ка­те­тов и ги­по­те­ну­зы.

б)  Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в пря­мо­уголь­ный тре­уголь­ник, если ра­ди­у­сы окруж­но­стей, впи­сан­ных в  тре­уголь­ни­ки, на ко­то­рые он де­лит­ся вы­со­той, про­ведённой к ги­по­те­ну­зе, равны 4 и 5. 

Спрятать решение

Ре­ше­ние.

а)  Обо­зна­чим ка­те­ты тре­уголь­ни­ка за a, b, а ги­по­те­ну­зу за c. Тогда

r= дробь: чис­ли­тель: S, зна­ме­на­тель: p конец дроби = дробь: чис­ли­тель: ab, зна­ме­на­тель: a плюс b плюс c конец дроби = дробь: чис­ли­тель: ab левая круг­лая скоб­ка a плюс b минус c пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка в квад­ра­те минус c в квад­ра­те конец дроби = дробь: чис­ли­тель: ab левая круг­лая скоб­ка a плюс b минус c пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2ab конец дроби = дробь: чис­ли­тель: a плюс b минус c, зна­ме­на­тель: 2 конец дроби .

б)  Пусть в пря­мо­уголь­ном тре­уголь­ни­ке ABC про­ве­де­на вы­со­та к ги­по­те­ну­зе BD. Пусть также AD мень­ше DC. Как из­вест­но, тре­уголь­ни­ки ABD и BCD по­доб­ны с ко­эф­фи­ци­ен­том  дробь: чис­ли­тель: AB, зна­ме­на­тель: BC конец дроби и в таком же от­но­ше­нии на­хо­дят­ся их ра­ди­у­сы впи­сан­ных окруж­но­стей. Зна­чит, AB=4x,BC=5x. Тогда AC= ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та x.

За­ме­тим также, что тре­уголь­ни­ки ACB и BDC по­доб­ны с ко­эф­фи­ци­ен­том  дробь: чис­ли­тель: AC, зна­ме­на­тель: BC конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та x, зна­ме­на­тель: 5x конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та , зна­ме­на­тель: 5 конец дроби .

По­это­му ра­ди­ус впи­сан­ной окруж­но­сти ABC можно найти как 5 умно­жить на дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та , зна­ме­на­тель: 5 конец дроби = ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та .

 

Ответ:  ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а и обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те б.3
По­лу­чен обос­но­ван­ный ответ в пунк­те б.

ИЛИ

Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а и при обос­но­ван­ном ре­ше­нии пунк­та б по­лу­чен не­вер­ный ответ из-за ариф­ме­ти­че­ской ошиб­ки.

2
Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а.

ИЛИ

При обос­но­ван­ном ре­ше­нии пунк­та б по­лу­чен не­вер­ный ответ из-за ариф­ме­ти­че­ской ошиб­ки.

ИЛИ

Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те б и ис­поль­зо­ва­ни­ем утвер­жде­ния пунк­та а, при этом пункт а не вы­пол­нен.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл3
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 154
Классификатор планиметрии: Ком­би­на­ции фигур, По­до­бие