Задания
Версия для печати и копирования в MS Word
Тип Д8 C1 № 513763
i

Дано урав­не­ние  синус 2x=1 плюс ко­рень из 2 ко­си­нус x плюс ко­си­нус 2x.

а)  Ре­ши­те урав­не­ние.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 0; Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем урав­не­ние

2 синус x ко­си­нус x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус x плюс 2 ко­си­нус в квад­ра­те x,

 ко­си­нус x левая круг­лая скоб­ка дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби синус x минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ко­си­нус x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка =0,

 ко­си­нус x левая круг­лая скоб­ка синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка =0.

Либо x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k, либо  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , то есть x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k, x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k.

Окон­ча­тель­но x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k, x= дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс 2 Пи k, x= дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 2 Пи k, k при­над­ле­жит Z .

б)  Корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 0; Пи пра­вая квад­рат­ная скоб­ка отберём с по­мо­щью три­го­но­мет­ри­че­ской окруж­но­сти.

На ука­зан­ном от­рез­ке лежат  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ,  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

 

Ответ: a) x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k, x= дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс 2 Пи k, x= дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 2 Пи k, k при­над­ле­жит Z ; б)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ,  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а, или в пунк­те б.

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния обоих пунк­тов — пунк­та а и пунк­та б.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 147
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли
Методы алгебры: Вве­де­ние вспо­мо­га­тель­но­го угла, Три­го­но­мет­ри­че­ские фор­му­лы суммы и раз­но­сти ар­гу­мен­тов, Фор­му­лы двой­но­го угла