Задания
Версия для печати и копирования в MS Word
Тип Д8 C1 № 513218
i

Дано урав­не­ние  левая круг­лая скоб­ка ко­си­нус 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те = 10 синус в квад­ра­те x минус 4.  

а)  Ре­ши­те урав­не­ние.

Б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем урав­не­ние

4 синус в сте­пе­ни 4 x минус 10 синус в квад­ра­те x плюс 4=0

 левая круг­лая скоб­ка синус в квад­ра­те x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 синус в квад­ра­те x минус 1 пра­вая круг­лая скоб­ка =0. Пер­вый мно­жи­тель об­ну­лять­ся не может.

 синус в квад­ра­те x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 2 конец дроби .

б)  На ука­зан­ном от­рез­ке лежат точки  минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби ,  минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби ,  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .

 

Ответ: а) x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 2 конец дроби ; б)  минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби ,  минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби ,  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а, или в пунк­те б.

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния обоих пунк­тов — пунк­та а и пунк­та б.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 144
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли, Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на синус или ко­си­нус, Урав­не­ния выс­ших сте­пе­ней
Методы алгебры: Фор­му­лы двой­но­го угла