Задания
Версия для печати и копирования в MS Word
Тип 3 № 510981
i

Ребро куба равно 6. Най­ди­те объем тре­уголь­ной приз­мы, от­се­ка­е­мой от него плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны двух ребер, вы­хо­дя­щих из одной вер­ши­ны и па­рал­лель­ной тре­тье­му ребру, вы­хо­дя­ще­му из этой же вер­ши­ны.

Спрятать решение

Ре­ше­ние.

По­сколь­ку ребро куба равно 6, его объем равен 6 умно­жить на 6 умно­жить на 6 = 216. Вы­со­та куба равна вы­со­те приз­мы, их объ­е­мы про­пор­ци­о­наль­ны пло­ща­дям их ос­но­ва­ний, а пло­щадь ос­но­ва­ния по­стро­ен­ной приз­мы в 8 раз мень­ше пло­ща­ди ос­но­ва­ния ис­ход­ной, по­это­му ис­ко­мый объем приз­мы равен 216 : 8  =  27.

 

Ответ: 27.


-------------
Дублирует задание № 501533.
Источник: Проб­ный ЕГЭ по ма­те­ма­ти­ке. Санкт-Пе­тер­бург 2013. Ва­ри­ант 2