Дано трёхзначное натуральное число (число не может начинаться с нуля), не кратное 100.
а) Может ли частное этого числа и суммы его цифр быть равным 90?
б) Может ли частное этого числа и суммы его цифр быть равным 88?
в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр?
Пусть данное число равно 100a + 10b + c, где a, b и c — цифры сотен, десятков и единиц соответственно. Если частное этого числа и суммы его цифр равно k, то выполнено
а) Если частное равно то
что верно, например, при
— частное числа
и суммы его цифр равно
б) Если частное равно то
Так как a < 10, то
или
В обоих этих случаях не существует натурального числа a, удовлетворяющего уравнению. Значит, частное трёхзначного числа и суммы его цифр не может быть равным 88.
в) Пусть k — наибольшее натуральное значение частного числа, не кратного и суммы его цифр. Тогда
Учитывая, что получаем:
откуда
Частное числа и суммы его цифр равно
Значит, наибольшее натуральное значение частного трёхзначного числа, не кратного
и суммы его цифр равно 91.
Ответ: а) да; б) нет; в) 91.

