Молодой семье на покупку квартиры банк выдает кредит под 20% годовых. Схема выплаты кредита следующая: ровно через год после выдачи кредита банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), затем эта семья в течение следующего года переводит в банк определенную (фиксированную) сумму ежегодного платежа. Семья Ивановых планирует погашать кредит равными платежами в течение 4 лет. Какую сумму может предоставить им банк, если ежегодно Ивановы имеют возможность выплачивать по кредиту 810 000 рублей?
Предположим, что семье Ивановых банк может предоставить кредит в размере х рублей. В течение первого года после получения кредита семья не переводит денег в банк.
По истечении первого отчетного года банк увеличивает долг на 20%. Долг становится 1,2х руб. В течение второго отчетного года Ивановы вносят в банк 810 000 руб.
К началу третьего отчетного года долг семьи становится (1,2х − 810000) руб, а с учетом очередной процентной ставки:
В течение этого отчетного года семья вносит в банк 810 000 руб. Долг уменьшается до
Очередное применение процентной ставки приводит к тому, что на начало четвертого отчетного года долг Ивановых банку становится Молодая семья вновь вносит 810 000 р. Теперь уже долг Ивановых уменьшается до
Начинается пятый, финишный год. Банк вновь увеличивает долг Ивановых на 20%. В результате он (долг) становится равным В течение финишного года Ивановы вновь вносят 810 000 руб. В результате этого же погашения долга молодая семья уже свободна от дальнейших выплат.
Решим уравнение
Ответ: 2096875 руб.

