СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задания Д7 C2 № 505871

Сфера с центром в точке вписана в прямоугольный параллелепипед Найдите угол между прямыми и где — середина

Решение.

Решение:

1) Координатно-векторным методом.

Если в прямоугольный параллелепипед вписана сфера, то он куб.

Пусть искомый угол будет Он равен углу между прямыми и

Введем декартовую систему координат, сторону куба при этом примем за 2. За начало координат примем вершину ось направим по ось – по ось — по

Выпишем координаты нужных точек: Найдем координаты векторов и

 

 

2) Элементарно-геометрическим методом.

Пусть, по-прежнему, сторона куба равна 2, — искомый угол.

Рассмотрим параллельный перенос отрезка на отрезок При этом Тогда — искомый.

Очевидно, что — равнобедренный: В таком случае — медиана и высота этого треугольника. В прямоугольном треугольнике

По свойству диагонали прямоугольного параллелепипеда будем иметь:

 

Ответ:

Раздел: Стереометрия
Источник: А. Ларин: Тре­ни­ро­воч­ный вариант № 5.
Методы геометрии: Использование векторов, Метод координат
Классификатор стереометрии: Вписанный шар, Прямоугольный параллелепипед, Угол между прямыми, Шар