В окружность вписан четырехугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке E. Прямая, проходящая через точку E и перпендикулярная к AB, пересекает сторону CD в точке M.
а) Докажите, что EM — медиана треугольника CED.
б) Найдите EM, если AD = 8, AB = 4 и угол CDB равен 60°.
а) углы ∠BDC и ∠BAC равны, так как они опираются на одну и ту же дугу BC. Тогда в треугольнике ABE угол ∠ABE = 30° (так как ∠BAC = 60°). Обозначим точку пересечения прямой ME со стороной AB за K. Тогда в прямоугольном треугольнике BKE угол ∠BEK = 60°. Далее, ∠BEK = ∠MED = 60° (как вертикальные). Отсюда получаем, что — равносторонний (так как все углы по
), то есть EM = ED = MD = x. Так как в прямоугольном треугольнике CED против угла в 30° лежит катет, в 2 раза меньший гипотенузы, то CD = 2x. Получили, что так как DM = x, точка M является серединой гипотенузы CD, то есть EM — медиана ΔCED. Что и требовалось доказать.
б) из ΔABE получаем, что Тогда по теореме Пифагора из ΔADE получаем:
Отсюда получаем, что
Ответ:

