На окружности некоторым способом расставили натуральные числа от 1 до 21 (каждое число поставлено по одному разу). Затем для каждой пары соседних чисел нашли разность большего и меньшего.
а) Могли ли все полученные разности быть не меньше 11?
б) Могли ли все полученные разности быть не меньше 10?
в) Помимо полученных разностей, для каждой пары чисел, стоящих через одно, нашли разность большего и меньшего. Для какого наибольшего целого числа k можно так расставить числа, чтобы все разности были не меньше k?
а) При любой расстановке разность числа 11 и любого соседнего с ним числа меньше 11. Значит, всегда найдутся хотя бы две разности меньше 11.
б) Например, для расстановки 1, 12, 2, 13, 3, 14, 4, 15, 5, 16, 6, 17, 7, 18, 8, 19, 9, 20, 10, 21, 11 все разности не меньше 10.
в) Оценим значение k. Рассмотрим числа от 1 до 7. Если какие-то два из них стоят рядом или через одно, то найдется разность меньше 7. Иначе они стоят через два, поскольку всего чисел 21. В этом случае число 8 стоит рядом или через одно с каким-то числом от 2 до 7 и найдется разность меньше 7.
Таким образом, всегда найдется разность меньше 7. Все разности могут быть не меньше 6. Например, для расстановки 1, 8, 15, 2, 9, 16, 3, 10, 17, 4, 11, 18, 5, 12, 19, 6, 13, 20, 7, 14, 21 все разности не меньше 6.
Ответ: а) нет; б) да; в) 6.

