Дан прямоугольный треугольник ABC с катетами AC = 5 и BC = 12. С центром в вершине B проведена окружность S радиуса 13. Найдите радиус окружности, вписанной в угол BAC и касающейся окружности S.
Обозначим ∠BAC = α. Тогда ,
,
Пусть x — радиус искомой окружности, O — ее центр, D — точка касания с лучом AC, M — точка касания с окружностью S, E — проекция точки O на прямую BC. Центр окружности, вписанной в угол, лежит на его биссектрисе, значит,
Из прямоугольного треугольника OAD находим, что
Заметим, что условию задачи удовлетворяют две окружности: одна из них касается окружности S внутренним образом, а вторая — внешним.
В первом случае
По теореме Пифагора или
откуда находим, что
Во втором случае
Тогда
откуда находим, что
Ответ: или

