Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма — это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое пяти оставшихся оценок.
а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться
б) Может ли эта разность рейтингов, вычисленных по старой и новой системам оценивания, равняться
в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.
Шесть экспертов оценивали фильм. Каждый из них выставил оценку — целое число баллов от 0 до 10 включительно. Все эксперты выставили различные оценки. Старый рейтинг фильма — это среднее арифметическое всех оценок экспертов. Новый рейтинг фильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки, и подсчитывается среднее арифметическое четырёх оставшихся оценок.
а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?
б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?
в) Найдите наибольшее возможное значение разности старого и нового рейтингов.
Восемь экспертов оценивали фильм. Каждый из них выставил оценку — целое число баллов от 0 до 12 включительно. Все эксперты выставили различные оценки. Старый рейтинг фильма — это среднее арифметическое всех оценок экспертов. Новый рейтинг фильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки, и подсчитывается среднее арифметическое шести оставшихся оценок.
а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?
б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться ?
в) Найдите наибольшее возможное значение разности старого и нового рейтингов.
Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку — целое число баллов от 1 до 15 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма — это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое пяти оставшихся оценок.
а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться —
б) Может ли эта разность рейтингов, вычисленных по старой и новой системам оценивания, равняться —
в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.

