Заголовок: А. Ларин: Тренировочный вариант № 116.
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 8629549

А. Ларин: Тренировочный вариант № 116.

1.  
i

Дано урав­не­ние  левая круг­лая скоб­ка 1 минус ко­си­нус 2x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка \ctg x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка =3 синус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x.

А)  Ре­ши­те урав­не­ние.

Б)  Най­ди­те его корни, при­над­ле­жа­щие про­ме­жут­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

2.  
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 AB  =  BC  =  8, BB1  =  6. Точка K  — се­ре­ди­на ребра BB1, точка P  — се­ре­ди­на ребра C1D1. Най­ди­те:

а)  пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да плос­ко­стью, про­хо­дя­щей через точки K и P па­рал­лель­но пря­мой BD1;

б)  объем боль­шей части па­рал­ле­ле­пи­пе­да, от­се­ка­е­мой от него этой плос­ко­стью.

3.  
i

Ре­ши­те не­ра­вен­ство \log _x левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка мень­ше или равно 3 минус \log _ левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби минус 2 пра­вая круг­лая скоб­ка x.

4.  
i

В тре­уголь­ни­ке ABC про­ве­де­на бис­сек­три­са CM, ка­са­тель­ная к опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC, про­хо­дя­щая через точку C, пе­ре­се­ка­ет пря­мую AB в точке P.

А)  До­ка­жи­те, что BC : AC  =  CP : AP.

Б)  Най­ди­те длину CP, если из­вест­но, что AM  =  5, BM  =  4.

5.  
i

Алек­сей вышел из дома на про­гул­ку со ско­ро­стью υ км/ч. После того, как он про­шел 6 км, из дома сле­дом за ним вы­бе­жа­ла со­ба­ка Жучка, ско­рость ко­то­рой была на 9 км/⁠ч боль­ше ско­ро­сти Алек­сея. Когда Жучка до­гна­ла хо­зя­и­на, они по­вер­ну­ли назад и вме­сте воз­вра­ти­лись домой со ско­ро­стью 4 км/⁠ч. Най­ди­те зна­че­ние υ, при ко­то­ром время про­гул­ки Алек­сея ока­жет­ся наи­мень­шим. Сколь­ко при этом со­ста­вит время его про­гул­ки?

6.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых си­сте­ма

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка y в квад­ра­те плюс x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка y в квад­ра­те минус y плюс x в квад­ра­те минус x пра­вая круг­лая скоб­ка , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: y минус x конец ар­гу­мен­та конец дроби =0,y плюс x=a конец си­сте­мы .

имеет ровно одно ре­ше­ние.

7.  
i

На про­ек­те «Вышка» каж­дый пры­жок в воду оце­ни­ва­ют пять судей. При этом каж­дый судья вы­став­ля­ет оцен­ку  — целое число бал­лов от 0 до 6 вклю­чи­тель­но. Из­вест­но, что за пры­жок Ти­му­ра Ла­сточ­ки­на все члены жюри вы­ста­ви­ли раз­лич­ные оцен­ки. По ста­рой си­сте­ме оце­ни­ва­ния ито­го­вый балл за пры­жок опре­де­лял­ся как сред­нее ариф­ме­ти­че­ское всех оце­нок судей. По новой си­сте­ме оце­ни­ва­ния ито­го­вый балл вы­чис­ля­ет­ся сле­ду­ю­щим об­ра­зом: от­бра­сы­ва­ют­ся наи­мень­шая и наи­боль­шая оцен­ки, и счи­та­ет­ся сред­нее ариф­ме­ти­че­ское трех остав­ших­ся оце­нок.

А)  Может ли раз­ность ито­го­вых бал­лов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния, быть рав­ной 1/10?

Б)  Может ли раз­ность ито­го­вых бал­лов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния, быть рав­ной 1/15?

В)  Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние раз­но­сти ито­го­вых бал­лов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния.