Задания
Версия для печати и копирования в MS Word
Тип 4 № 681462
i

В со­рев­но­ва­ни­ях по тол­ка­нию ядра участ­ву­ют 4 спортс­ме­на из Фин­лян­дии, 7 спортс­ме­нов из Дании, 9 спортс­ме­нов из Шве­ции и 5 из Нор­ве­гии. По­ря­док, в ко­то­ром вы­сту­па­ют спортс­ме­ны, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен, ко­то­рый вы­сту­па­ет по­след­ним, ока­жет­ся из Шве­ции.

Спрятать решение

Ре­ше­ние.

Всего в со­рев­но­ва­ни­ях при­ни­ма­ет уча­стие 4 + 7 + 9 + 5  =  25 спортс­ме­нов. Зна­чит, ве­ро­ят­ность того, что спортс­мен, ко­то­рый вы­сту­па­ет по­след­ним, ока­жет­ся из Шве­ции, равна

 дробь: чис­ли­тель: 9, зна­ме­на­тель: 25 конец дроби =0,36.

Ответ: 0,36.


-------------
Дублирует задание № 282858.
Источник: ЕГЭ−2025. Ос­нов­ная волна 27.05.2025. Санкт-Пе­тер­бург