Тип 18 № 672805 

Задача с параметром. Уравнения с параметром
i
Найдите все значения a, при каждом из которых уравнение
имеет единственный корень.
Спрятать решениеРешение. Преобразуем уравнение, поделив обе части на положительное выражение 


Пусть
тогда каждому положительному значению t соответствует ровно одно значение x, при
нет соответствующих значений x. Требуется найти все значения a, при каждом из которых уравнение

имеет ровно один положительный корень.
При
получаем:

значит, условие задачи выполнено. При
заметив, что сумма коэффициентов уравнения равна нулю, находим корни:

или

Корень
положителен при любых значениях параметра а, поэтому условие задачи выполнено в двух случаях:
— если два найденных корня совпадают, то есть

— если второй корень не является положительным:

Объединяя результаты всех рассмотренных случаев, получаем, что
и 
Ответ: 
Спрятать критерииКритерии проверки:| Критерии оценивания выполнения задания | Баллы |
|---|
| Обоснованно получен верный ответ | 4 |
| С помощью верного рассуждения получены верные значения параметра, но допущен недочет | 3 |
| С помощью верного рассуждения получен неверный ответ из-за вычислительной ошибки, при этом верно выполнены все шаги решения, ИЛИ в решении верно найдены все граничные точки множества значений параметра, но неверно определены промежутки значений | 2 |
| В случае аналитического решения: задача верно сведена к набору решенных уравнений и неравенств с учетом требуемых ограничений, ИЛИ в случае графического решения: задача верно сведена к исследованию взаимного расположения линий (изображены необходимые фигуры, учтены ограничения, указана связь исходной задачи с построенными фигурами) | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
| Максимальный балл | 4 |
Ответ: 