Задания
Версия для печати и копирования в MS Word
Тип 2 № 661301
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­же­ны век­то­ры \vec a и \vec b. Най­ди­те длину век­то­ра 2\vec a минус \vec b.

Спрятать решение

Ре­ше­ние.

Вы­пи­шем ко­ор­ди­на­ты век­то­ров: \vec a левая круг­лая скоб­ка 1; минус 1 пра­вая круг­лая скоб­ка и \vec b левая круг­лая скоб­ка минус 2; 1 пра­вая круг­лая скоб­ка . Най­дем ко­ор­ди­на­ты век­то­ра 2\vec a минус \vec b:

2\vec a минус \vec b = левая круг­лая скоб­ка 2 умно­жить на 1 минус левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка ; 2 умно­жить на левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 4; минус 3 пра­вая круг­лая скоб­ка .

Най­дем длину век­то­ра:

|2\vec a минус \vec b| = ко­рень из: на­ча­ло ар­гу­мен­та: 4 в квад­ра­те плюс левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та = 5.

Ответ: 5.


Аналоги к заданию № 649905: 654476 661301 676845 ... Все

Источник: ЕГЭ по ма­те­ма­ти­ке 20.06.2024. Ос­нов­ная волна, ре­зерв­ный день. Раз­ные го­ро­да