Задания
Версия для печати и копирования в MS Word

а)  Ре­ши­те урав­не­ние 7 в сте­пе­ни левая круг­лая скоб­ка 2 ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 7, зна­ме­на­тель: 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка конец дроби .

б)  Най­ди­те все корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; 2 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

a)  По­лу­чим сте­пе­ни с рав­ны­ми ос­но­ва­ни­я­ми:

7 в сте­пе­ни левая круг­лая скоб­ка 2 ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 7, зна­ме­на­тель: 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка конец дроби рав­но­силь­но 7 в сте­пе­ни левая круг­лая скоб­ка 2 ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = 7 в сте­пе­ни левая круг­лая скоб­ка 1 минус ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка рав­но­силь­но 2 ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка = 1 минус ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка рав­но­силь­но
 рав­но­силь­но 2 ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка минус 1=0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка = минус 1, ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец со­во­куп­но­сти . рав­но­силь­но
 рав­но­силь­но со­во­куп­ность вы­ра­же­ний ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , ко­си­нус x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец со­во­куп­но­сти . \underset | ко­си­нус x| мень­ше или равно 1 \mathop рав­но­силь­но ко­си­нус x = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби рав­но­силь­но x= \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, k при­над­ле­жит Z .

б)  От­бе­рем корни при по­мо­щи еди­нич­ной окруж­но­сти (см. рис.). Под­хо­дит ко­рень  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k ; k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б)

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 431
Классификатор алгебры: Урав­не­ния сме­шан­но­го типа, По­ка­за­тель­ные урав­не­ния, Ло­га­риф­ми­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на синус или ко­си­нус