
Найдите все значения параметра a, при каждом из которых система
имеет три различных решения.
Решение. Запишем первое уравнение системы в виде
При левая часть не имеет смысла. При
уравнение задаёт прямую
и гиперболу
(см. рис.). При каждом значении a уравнение
задаёт прямую с угловым коэффициентом a, проходящую через начало координат.
Число решений исходной системы равно числу точек пересечения прямой и гиперболы
с прямой
при условии
Прямая пересекает прямую
при
и при
пересекает правую ветвь гиперболы при
пересекает левую ветвь гиперболы при
проходит через точку пересечения прямой
и гиперболы при
Таким образом, исходная система имеет три различных решения при и при
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен правильный ответ. | 4 |
| С помощью верного рассуждения получено множество значений a, отличающееся от искомого только исключением точки a = 4. | 3 |
| С помощью верного рассуждения получен промежуток (4; +∞), возможно, с исключением граничной точки a = 4 и исключением точки a = 3 ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения. | 2 |
| Задача верно сведена к исследованию взаимного расположения прямой и окружности и прямых (аналитически или графически). | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
PDF-версии: