Функция
определена и непрерывна на интервале
На рисунке изображен график её производной. Найдите промежутки возрастания функции
В ответе укажите сумму целых точек, входящих в эти промежутки.
Промежутки возрастания данной функции f(x) соответствуют промежуткам, на которых её производная неотрицательна, то есть интервалам (−3; 1) и (1; 4). В силу непрерывности функция f(x) возрастает на интервале (−3; 4). Данный промежуток содержит целые точки −2, −1, 0, 1, 2 и 3. Их сумма равна 3.
График одной из функций, соответствующих условию, представлен на рисунке.
Ответ: 3.
Примечание.
Напомним, что если функция непрерывна на каком-либо из концов промежутка возрастания или убывания, то граничную точку присоединяют к этому промежутку. В частности, если функция непрерывна на отрезке и монотонна на интервале
то функция монотонна на всем отрезке
Обобщением этого утверждения служит следующая теорема: функция монотонна на промежутке, если ее производная сохраняет знак всюду на этом промежутке, за исключением конечного числа точек, в которых функция непрерывна. Например, производная функции
не существует в точке и положительна во всех остальных точках. Функция f в точке
непрерывна, следовательно, она возрастает на
Рекомендуем сравнить данную задачу с задачами 551782 и 551783 и обратить внимание на границы промежутка задания функции.

