
В треугольнике ABC провели высоту CC1 и медиану AA1. Оказалось, что точки A, A1, C, C1 лежат на одной окружности.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите площадь треугольника ABC, если AA1 : CC1 = 3 : 2 и A1C1 = 2.
Решение. а) Вписанные углы AC1C и AA1C опираются на одну дугу AC, значит, они равны, то есть
В треугольнике ABC медиана AA1 является высотой, значит, треугольник ABC является равнобедренным и AB = AC.
б) В прямоугольном треугольнике BCC1 медиана C1A1 равна половине гипотенузы, значит, BC = 4. Прямоугольные треугольники ABA1 и CBC1 подобны по общему углу B, значит,
В прямоугольном треугольнике ACA1 получаем
Площадь треугольника ABC равна
Ответ: б)
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: