Задания
Версия для печати и копирования в MS Word

а)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка {2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x минус синус 2x пра­вая круг­лая скоб­ка = x.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Решим урав­не­ние:

 ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка {2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x минус синус 2x пра­вая круг­лая скоб­ка = x рав­но­силь­но {2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x минус 2 синус ко­си­нус x =4 в сте­пе­ни x рав­но­силь­но

 

 рав­но­силь­но ко­си­нус x левая круг­лая скоб­ка 2 синус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка =0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний ко­си­нус x =0, синус x= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k,x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, x= минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, k при­над­ле­жит Z . конец со­во­куп­но­сти .

б)  От­бе­рем корни при по­мо­щи три­го­но­мет­ри­че­ской окруж­но­сти (см. рис.). На за­дан­ном про­ме­жут­ке лежат корни:  дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби , дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби , дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби , дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби , дробь: чис­ли­тель: 10 Пи , зна­ме­на­тель: 3 конец дроби , дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 318. (Часть C)
Классификатор алгебры: Ло­га­риф­ми­че­ские урав­не­ния, По­ка­за­тель­ные урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, Урав­не­ния сме­шан­но­го типа
Кодификатор ФИПИ/Решу ЕГЭ: