В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности.
а) Докажите, что треугольник ABC равнобедренный.
б) Пусть P — точка пересечения биссектрис треугольника ABC. Найдите площадь четырёхугольника AMPN, если MN : BC = 2 : 5, а BN = 21.
а) Вписанные углы NCM и MBN опираются на одну и ту же дугу, следовательно, они равны. Поскольку
получаем то есть треугольник ABC равнобедренный.
б) Поскольку
получаем, что и прямая MN параллельна прямой BC. Отрезок BC равен
Пусть AK — биссектриса, медиана и высота треугольника ABC. Прямая AK проходит через точку P — центр вписанной окружности. Треугольник ANM подобен треугольнику ABC, следовательно,
Тогда
Площадь треугольника ABС равна
а значит
В четырёхугольнике AMPN диагонали AP и MN перпендикулярны, следовательно, его площадь равна
Ответ: б)

