Найдите все значения параметра a, при которых уравнение
имеет нечетное число решений.
Поскольку
то при подстановке x и в уравнение результат будет одинаковым. То есть все решения разбиваются на пары, кроме решения
которое является парой само к себе. Значит,
обязано подходить в уравнение. Тогда
откуда
Осталось убедиться, что при таких a решений будет конечное число.
Пусть Тогда
Первое уравнение имеет корнем только Второе можно записать в виде
Докажем, что у него конечное количество положительных корней (отрицательные — парные к ним). Ясно что
не подходят. Возьмем производную:
Значит, при есть еще не более одного решения. Аналогично разбирается случай
Ответ:

