Задания
Версия для печати и копирования в MS Word
Тип Д12 C3 № 527325
i

Ре­ши­те не­ра­вен­ство: 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1 минус 4x плюс 4x в квад­ра­те пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс 1 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 7x плюс 12 пра­вая круг­лая скоб­ка \leqslant0.

Спрятать решение

Ре­ше­ние.

Най­дем ОДЗ не­ра­вен­ства и пре­об­ра­зу­ем его:

x плюс 1 боль­ше 0\Rightarrow x боль­ше минус 1;

x плюс 1 не равно 1\Rightarrow x не равно 0;

1 минус 2x боль­ше 0\Rightarrow x мень­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ;

1 минус 4x плюс 4x в квад­ра­те боль­ше 0 рав­но­силь­но левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка в квад­ра­те боль­ше 0 \Rightarrow x не равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ;

1 минус 4x плюс 4x в квад­ра­те не равно 1 рав­но­силь­но левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка в квад­ра­те не равно 1 рав­но­силь­но 1 минус 2x не равно \pm 1\Rightarrow x не равно 0;x не равно 1;

x плюс 3 боль­ше 0\Rightarrow x боль­ше минус 3;

 дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс 1 конец дроби боль­ше 0\Rightarrow x боль­ше минус 1;

 дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс 1 конец дроби не равно 1\Rightarrow x не равно 0;

x в квад­ра­те плюс 7x плюс 12 боль­ше 0 рав­но­силь­но левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка боль­ше 0\Rightarrow x боль­ше минус 3 или x мень­ше минус 4.

От­сю­да ОДЗ не­ра­вен­ства  левая круг­лая скоб­ка минус 1;0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка . На ОДЗ не­ра­вен­ство можно пре­об­ра­зо­вать так:

2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка в квад­ра­те пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка мень­ше или равно 0 рав­но­силь­но

 рав­но­силь­но ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка мень­ше или равно 0 рав­но­силь­но

 рав­но­силь­но ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка мень­ше или равно 0 рав­но­силь­но минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка мень­ше или равно 0 рав­но­силь­но

 рав­но­силь­но ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка боль­ше или равно 0 рав­но­силь­но дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 1, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 1 конец дроби боль­ше или равно 0.

Ра­ци­о­на­ли­зи­ру­ем:

 дробь: чис­ли­тель: x плюс 4 минус 1, зна­ме­на­тель: x плюс 1 минус 1 конец дроби боль­ше или равно 0 мень­ше рав­но­силь­но дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: x конец дроби боль­ше или равно 0 рав­но­силь­но x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 0; бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Учи­ты­вая ОДЗ, по­лу­ча­ем окон­ча­тель­но: x при­над­ле­жит левая круг­лая скоб­ка 0; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

 

Ответ: x при­над­ле­жит левая круг­лая скоб­ка 0; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ.3
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих не­ра­вен­ствах ис­ход­ной си­сте­мы.2
Обос­но­ван­но по­лу­чен вер­ный ответ в одном не­ра­вен­стве ис­ход­ной си­сте­мы.

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния си­сте­мы не­ра­венств.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл3
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 253
Классификатор алгебры: Не­ра­вен­ства с ло­га­риф­ма­ми по пе­ре­мен­но­му ос­но­ва­нию
Кодификатор ФИПИ/Решу ЕГЭ: