Задания
Версия для печати и копирования в MS Word
Тип Д8 C1 № 527168
i

а)  Ре­ши­те урав­не­ние 2 синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус 2x= синус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем урав­не­ние:

2 синус x ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 ко­си­нус x синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та левая круг­лая скоб­ка 2 ко­си­нус в квад­ра­те x минус 1 пра­вая круг­лая скоб­ка = синус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та рав­но­силь­но

 

 рав­но­силь­но 2 синус x умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс 2 ко­си­нус x умно­жить на дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус в квад­ра­те x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та = синус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та рав­но­силь­но

 

 рав­но­силь­но ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус в квад­ра­те x=0 рав­но­силь­но ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x левая круг­лая скоб­ка 1 минус 2 ко­си­нус x пра­вая круг­лая скоб­ка =0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний ко­си­нус x=0, ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . конец со­во­куп­но­сти .

В пер­вом слу­чае x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k, во вто­ром x=\pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k.

б)  С по­мо­щью три­го­но­мет­ри­че­ско­го круга от­бе­рем корни. На ука­зан­ном про­ме­жут­ке лежат: x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби , x= минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби , x= дробь: чис­ли­тель: минус 5 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k;\pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k:k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ;  минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ;  дробь: чис­ли­тель: минус 5 Пи , зна­ме­на­тель: 3 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а, или в пунк­те б.

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния обоих пунк­тов — пунк­та а и пунк­та б.

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 240
Методы алгебры: Три­го­но­мет­ри­че­ские фор­му­лы суммы и раз­но­сти ар­гу­мен­тов
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Три­го­но­мет­ри­че­ские урав­не­ния