Задания
Версия для печати и копирования в MS Word

а)  Ре­ши­те урав­не­ние  синус 2x = синус x минус 2 ко­си­нус x плюс 1.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ;3 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Вос­поль­зу­ем­ся фор­му­лой си­ну­са двой­но­го угла:

2 синус x ко­си­нус x= синус x минус 2 ко­си­нус x плюс 1 рав­но­силь­но левая круг­лая скоб­ка 2 ко­си­нус x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус x плюс 1 пра­вая круг­лая скоб­ка =0 рав­но­силь­но

 рав­но­силь­но со­во­куп­ность вы­ра­же­ний  новая стро­ка ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ,  новая стро­ка синус x= минус 1,  конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний  новая стро­ка x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k,  новая стро­ка x = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k,  новая стро­ка x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k  конец со­во­куп­но­сти .k при­над­ле­жит Z .

б)  С по­мо­щью чис­ло­вой окруж­но­сти отберём корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ;3 Пи пра­вая квад­рат­ная скоб­ка . По­лу­чим числа  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ,  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби ,  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k:k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби , дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби , дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 526339: 526535 Все

Источники:
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, ре­ша­е­мые раз­ло­же­ни­ем на мно­жи­те­ли
Методы алгебры: Груп­пи­ров­ка, Фор­му­лы двой­но­го угла