
В правильной четырёхугольной пирамиде SABCD сторона основания AB равна 4, а боковое ребро SA = 8. На рёбрах
а) Докажите, что плоскость α делит ребро AB в отношении 1 : 3, считая от вершины A.
б) Найдите расстояние между прямыми
Решение. а) Пусть плоскость α пересекает сторону основания АВ в точке М. Поскольку плоскость α параллельна прямой ВС, она параллельна и прямой AD, а значит, прямые
поэтому точка М делит сторону АВ в том же отношении, что точка N делит сторону DC.
б) Заметим, что прямые
Пусть Р — середина AD, H — середина ВС. Построим треугольник SPH и пусть прямая HT перпендикулярна прямой SP. Кроме того, HT перпендикулярна AD и, следовательно, плоскости SDA, а вместе с ней α. Плоскость α пересекает ребро SB в точке L, причем, KL || BC. R — точка пересечения
Заметим, что PH = AB = 4. В треугольнике SAP: Пусть
тогда
применяя теорему Пифагора из треугольников
Тогда
По условию, поэтому
а тогда плоскость сечения делит высоту HT в том же отношении, считая от точки T. Следовательно, расстояние между
Ответ: б)
Примечание.
Высота HT равнобедренного треугольника SPH может быть найдена проще. Высота этого треугольника проведенная к основанию PH есть высота пирамиды, соединяющая вершину с центром основания, значит, Тогда
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
PDF-версии: